Why do almost all mammals have seven cervical vertebrae? Developmental constraints,Hox genes, and cancer

Author(s):  
Frietson Galis
Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 333-346 ◽  
Author(s):  
A.C. Burke ◽  
C.E. Nelson ◽  
B.A. Morgan ◽  
C. Tabin

A common form of evolutionary variation between vertebrate taxa is the different numbers of segments that contribute to various regions of the anterior-posterior axis; cervical vertebrae, thoracic vertebrae, etc. The term ‘transposition’ is used to describe this phenomenon. Genetic experiments with homeotic genes in mice have demonstrated that Hox genes are in part responsible for the specification of segmental identity along the anterior-posterior axis, and it has been proposed that an axial Hox code determines the morphology of individual vertebrae (Kessel, M. and Gruss, P. (1990) Science 249, 347–379). This paper presents a comparative study of the developmental patterns of homeobox gene expression and developmental morphology between animals that have homologous regulatory genes but different morphologies. The axial expression boundaries of 23 Hox genes were examined in the paraxial mesoderm of chick, and 16 in mouse embryos by in situ hybridization and immunolocalization techniques. Hox gene anterior expression boundaries were found to be transposed in concert with morphological boundaries. This data contributes a mechanistic level to the assumed homology of these regions in vertebrates. The recognition of mechanistic homology supports the historical homology of basic patterning mechanisms between all organisms that share these genes.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 579-595 ◽  
Author(s):  
B.G. Condie ◽  
M.R. Capecchi

Gene targeting in embryo-derived stem (ES) cells was used to generate mice with a disruption in the homeobox-containing gene Hoxd-3 (Hox-4.1). Mice homozygous for this mutation show a radically remodeled craniocervical joint. The anterior arch of the atlas is transformed to an extension of the basioccipital bone of the skull. The lateral masses of the atlas also assume a morphology more closely resembling the exoccipitals and, to a variable extent, fuse with the exoccipitals. Formation of the second cervical vertebra, the axis, is also affected. The dens and the superior facets are deleted, and the axis shows ‘atlas-like’ characteristics. An unexpected observation is that different parts of the same vertebra are differentially affected by the loss of Hoxd-3 function. Some parts are deleted, others are homeotically transformed to more anterior structures. These observations suggest that one role of Hox genes may be to differentially control the proliferation rates of the mesenchymal condensations that give rise to the vertebral cartilages. Within the mouse Hox complex, paralogous genes not only encode very similar proteins but also often exhibit very similar expression patterns. Therefore, it has been postulated that paralogous Hox genes would perform similar roles. Surprisingly, however, no tissues or structures are affected in common by mutations in the two paralogous genes, Hoxa-3 and Hoxd-3.


Author(s):  
Maximiliano Martínez

RESUMENEn este artículo defiendo la necesidad de reformular los conceptos de constreñimiento del desarrollo y variación a la luz de trabajos empíricos y teóricos recientes. Argumento que la noción de variación refiere a esquemas establecidos en otras épocas y que deben ser reconsiderados siguiendo los aportes de la biología del desarrollo. La variación no sería irrestricta sino restringida y condicionada. Esta reforma del concepto de variación coincide con una reforma del concepto de constreñimiento: los constreñimientos son un factor causal positivo en la evolución, en contraposición a como son usualmente entendidos en la biología.PALABRAS CLAVECONSTREÑIMIENTOS, VARIACIÓN, GENES HOX, MORFOGÉNESIS, EVODEVOABSTRACTIn this paper I propose a revision of the concepts of developmental constraints and variation, in the light of recent empirical and theoretical works. I argue that the concept of variation evokes schemes established in other times that need to be reconsidered due to the contributions of developmental biology; variation is not unrestricted but biased. This conceptual reform of variation goes hand in hand with a reformulation of the concept of developmental constraint: constraints are a positive causal factor in evolution, in contrast with the way they are usually understood in biology.KEYWORDSCONSTRAINTS, VARIATION, HOX GENES, MORPHOGENETICS, EVODEVO


2019 ◽  
Author(s):  
Pin Huan ◽  
Qian Wang ◽  
Sujian Tan ◽  
Baozhong Liu

AbstractUnlike the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns and, with some exceptions, have generally been described as lacking the canonical staggered pattern along the anterior-posterior (AP) axis. This difference is unexpected given that almost all molluscs share highly conserved early development. Here, we show that molluscan Hox expression can undergo dynamic changes, which may explain why previous research observed different expression patterns. Moreover, we reveal that a key character of molluscan Hox expression is that the dorsal and ventral expression is dissociated. We then deduce a generalized molluscan Hox expression model, including conserved staggered Hox expression in the neuroectoderm on the ventral side and lineage-specific dorsal expression that strongly correlates with shell formation. This generalized model clarifies a long-standing debate over whether molluscs possess staggered Hox expression and it can be used to explain the diversification of molluscs. In this scenario, the dorsoventral dissociation of Hox expression allows lineage-specific dorsal and ventral patterning in different clades, which may have permitted the evolution of diverse body plans in different molluscan clades.


2021 ◽  
Vol 9 (3) ◽  
pp. 37
Author(s):  
Georgy P. Maslakov ◽  
Nikita S. Kulishkin ◽  
Alina A. Surkova ◽  
Milana A. Kulakova

Hox genes are some of the best studied developmental control genes. In the overwhelming majority of bilateral animals, these genes are sequentially activated along the main body axis during the establishment of the ground plane, i.e., at the moment of gastrulation. Their activation is necessary for the correct differentiation of cell lines, but at the same time it reduces the level of stemness. That is why the chromatin of Hox loci in the pre-gastrulating embryo is in a bivalent state. It carries both repressive and permissive epigenetic markers at H3 histone residues, leading to transcriptional repression. There is a paradox that maternal RNAs, and in some cases the proteins of the Hox genes, are present in oocytes and preimplantation embryos in mammals. Their functions should be different from the zygotic ones and have not been studied to date. Our object is the errant annelid Platynereis dumerilii. This model is convenient for studying new functions and mechanisms of regulation of Hox genes, because it is incomparably simpler than laboratory vertebrates. Using a standard RT-PCR on cDNA template which was obtained by reverse transcription using random primers, we found that maternal transcripts of almost all Hox genes are present in unfertilized oocytes of worm. We assessed the localization of these transcripts using WMISH.


2021 ◽  
Author(s):  
Jillian Oliver ◽  
Katrina Jones ◽  
Stephanie Pierce ◽  
Lionel Hautier

Xenarthrans (armadillos, anteaters, sloths and their extinct relatives) are unique among mammals in displaying a distinctive specialization of the posterior trunk vertebrae - supernumerary vertebral xenarthrous articulations. This study seeks to understand how xenarthry develops through ontogeny and if its development impacts regionalisation patterns (thoracic vs lumbar). Using 3D geometric morphometrics on the neural arches of vertebrae, we explore phenotypic, allometric, and disparity patterns of the different axial morphotypes during ontogeny of nine-banded armadillos. Shape-based regionalisation analyses showed that adult thoracolumbar column is divided into three regions according to the presence or absence of ribs and the presence or absence of xenarthrous articulations. A three-region-division was retrieved in almost all specimens through development, although younger stages (e.g. embryos, neonates) have more region boundary variability. In size-based regionalisation analyses, thoracolumbar vertebrae are separated into two regions according to the presence or absence of xenarthry. We show that xenarthrous thoracic vertebrae grow at a slower rate, while anterior thoracics and lumbar grow at a faster rate relatively, with rates decreasing anteroposterioly in the former and increasing anteroposterioly in the latter. We propose that different proportions between vertebrae and vertebral regions might result from differences in growth pattern and timing of ossification, which might in turn correlate with expression patterns of Hox genes.


1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Sign in / Sign up

Export Citation Format

Share Document